Муниципальное бюджетное общеобразовательное учреждение «Пудостьская средняя общеобразовательная школа»

Принято

на заседании педагогического совета Протокол № $\frac{1}{2000}$ от $\frac{30.08.2013}{2000}$ г.

Ashefmeence

Mp. V 177 of 30.08.13

Duff of 30.08.13

Breece Tourne and Many Constant of the State of the Sta

Рабочая программа

<u>по физике</u> базовый уровень

элективный курс «Методы решения физических задач»

для 11 класса

учитель: Черенкова Наталья Николаевна.

Пояснительная записка

В 10-11 классах физика преподаётся на базовом уровне при 2 ^х часах в неделю. Поскольку при таком планировании ощущается недостаток времени для приобретения навыков применения полученных знаний, то данный элективный курс, разработанный с учётом требований вузов, будет являться существенным дополнением к основному. Рабочая программа по элективному курсу составлена на основе дополнительных материалов к учебнику физики в 11 классе.

Программа элективного курса «Методы решения физических задач» относится к предметно-ориентированному виду программ. Курс предполагает выход за рамки традиционных учебных программ и составлен для учащихся 11 класса, проявляющих интерес к предметам физико-математического цикла и желающих поступить в технический вуз.

Программа элективного курса поможет учащимся старших классов систематизировать свои знания по физике, значительно расширить круг физических вопросов, которые не изучаются в школьном курсе. Эта программа позволяет учащимся подготовиться к государственной (итоговой) аттестации. Рассмотрение некоторых тем данной программы поможет учащимся подготовиться к усвоению курса физики при дальнейшем обучении.

Элективный курс «Методы решения физических задач» включает решение вычислительных, логических, графических, геометрических, экспериментальных задач по всем разделам основного курса. Программа курса согласована с содержанием программы по физике для 11 класса Г. Я. Мякишева, что позволит осуществить повторение, совершенствование и практическое применение усвоенных знаний и умений. В то же время в программу элективного курса включён дополнительный материал: мощность в замкнутой цепи и КПД источника тока, соединение источников тока, закон Ома для цепи переменного тока, глаз человека как оптическая система, оптические приборы (телескоп, микроскоп). Изучение данных вопросов требуется для подготовки к поступлению в вуз.

Программа направлена на обучение учащихся общим приёмам и методам решения типовых задач, которые формируют физическое мышление, навыки умственного труда, экономят время для выполнения творческих заданий. Учащиеся будут ознакомлены с решением проблемных, нестандартных и оригинальных задач, включая некоторые задачи физических олимпиад.

Цели:

ознакомить учащихся с наиболее общими приёмами и методами решения задач, что будет способствовать развитию логического мышления и формированию соответствующих практических умений и навыков;

обеспечить дополнительную поддержку учащихся классов универсального обучения для сдачи ЕГЭ по физике и к поступлению в технический вуз.

Задачи:

- 1) повторить и систематизировать изученный материал, расширить знания учащихся по основным вопросам физики, которые необходимы для продолжения образования;
- 2) продолжить формирование ряда общих учебных и предметных умений и навыков:
 - осознанно применять физические законы и модели для решения задач;
 - выполнять чертежи, рисунки, графики;
 - использовать приёмы рациональных вычислений,
 - пользоваться учебной, справочной и научно-популярной литературой для нахождения нужной информации,
 - пользоваться алгоритмами и самостоятельно составлять планы решения конкретных задач,
 - использовать при решении экспериментальных задач приборы с соблюдением правил охраны труда;
 - применять новые компьютерные технологии для моделирования явлений, обработки результатов, получения информации из Интернета и других источников;

- 3) создать условия для овладения приёмами исследовательской деятельности, способствовать развитию логичности, самостоятельности мышления, творческих способностей учащихся;
- 4) создать условия для формирования умений работать в парах, в группах, для развития навыков взаимоконтроля и самоконтроля.

Нормативные правовые документы.

Рабочая программа разработана в соответствии с:

Законом «Об образовании»; федеральным компонентом государственного образовательного стандарта по физике (базовый уровень), утвержденный Приказом Министерства образования РФ от 05.03.2004 года . \mathbb{N} 1089;

при составлении рабочей программы учтены рекомендации Письма Комитета общего и профессионального образования Ленинградской области от 09.03.2011 года «О подходах к разработке и утверждению рабочих программ учебных курсов, предметов, дисциплин(модулей)»;

базисным учебным планом общеобразовательных учреждений Российской Федерации, утвержденный приказом Министерством образования РФ № 1312 от 09.03.04

федеральным перечнем учебников, утвержденных приказом от 7 декабря 2005 г. № 302, рекомендованных (допущенных) к использованию в образовательном процессе в образовательных учреждениях, реализующих программы общего образования;

требованиями к оснащению образовательного процесса в соответствии с содержательным наполнением учебных предметов федерального компонента государственного образовательного стандарта;

сборник нормативных документов /Сост. Н.А. Ермолаева, В.А. Орлов. - М.: Просвещение,1987.

Элективный курс «Методы решения физических задач» 10-11 классы разработан в 2008-2009 учебном году, одобрен ЛОИРО. Данная рабочая программа составлена на его основе. Программа курса согласована с содержанием программы по физике для 11 класса Г. Я. Мякишева.

Место предмета в федеральном базисном учебном плане.

В БУП предусмотрены часы на профильную подготовку обучающихся 11-х классов. На прохождение курса отведено 34 часа из школьного компонента.

<u>Формы организации образовательного процесса, а также преобладающие формы текущего контроля знаний, умений, навыков</u>

Реализация программы факультативного курса строится с учетом личного опыта учащихся на основе личностно-ориентированного, деятельностного, проблемно-поискового подходов.

Классно-урочная форма организации образовательного процесса. Большая часть уроков – это комбинированные уроки с использованием традиционных, исследовательских, дискуссионных технологий.

Предусматривается организация коллективной работы учителя и учащихся, самостоятельной работы учащихся, работы в парах и группах по решению и составлению задач, поиску и обработке информации из различных источников (учебники, справочники, сборники задач, научно-популярная литература), выполнению лабораторных работ со школьным оборудованием и практических работ с использованием компьютерных технологий.

Предусматриваются виды контроля, позволяющие оценивать динамику усвоения курса учащимися и получить данные для определения дальнейшего совершенствования содержания курса:

- физические диктанты,
- кратковременные проверочные работы на решение задач,
- лабораторные работы со школьным оборудованием,
- практические работы с использованием компьютерных технологий,
- тесты,
- задания по составлению задач,
- выступления с сообщениями.

Итоговая проверка заключается в выполнении учащимися контрольных работ, включающих тестовые задания, качественные, расчётные и графические задачи различной степени сложности.

Содержание программы.

1. Законы постоянного тока (7 часов).

Закон Ома для однородного участка и полной цепи. Расчёт разветвления электрических цепей. Шунты и добавочные сопротивления. Мощность во внешней цепи и КПД источника тока.

<u>Контрольные мероприятия:</u> 1 практическая работа, 2 лабораторных работы, тест по теме «Постоянный ток».

2.Магнитное поле. Электромагнитная индукция (3 часа).

Силы Ампера и Лоренца. Закон ЭМИ. Правило Ленца. Самоиндукция.

Контрольные мероприятия: тест по теме «Магнитное поле. Сила Ампера».

3. Механические и электромагнитные колебания и волны (6 часов).

Простейшие колебательные системы. Кинематика и динамика механических колебаний, превращения энергии. Активное, ёмкостное и индуктивное сопротивления в цепи переменного тока. Векторные диаграммы. Закон Ома для цепи переменного тока. Электрический резонанс.

<u>Контрольные мероприятия</u>: 1 лабораторная работа, 1 практическая работа. Тест по теме «Электромагнитные волны», контрольная работа по темам: «Магнитное поле. Электромагнитная индукция. Электромагнитные колебания и волны».

4. Олимпиалные залачи. (3 часа)

5. Оптика (5 часов).

<u>Геометрическая оптика</u>. Законы отражения и преломления света. Построение изображений в тонких линзах. Формула тонкой линзы. Оптические системы.

<u>Волновая оптика</u>. Интерференция света, условия интерференционного максимума и минимума. Дифракция света. Дифракционная решётка. Дисперсия.

Контрольные мероприятия: кратковременная проверочная работа.

6. Основы СТО (1 час).

Следствия СТО.

7. Световые кванты (3 часа).

Уравнение Эйнштейна для фотоэффекта. Фотоны.

<u>Контрольные мероприятия:</u> кратковременная проверочная работа, тест по теме: «Квантовая физика».

8. Атомная и ядерная физика (6 часов).

Применение постулатов Бора для расчёта линейчатых спектров излучения и поглощения энергии водородоподобными атомами. Ядерные реакции. Правило смещения. Закон радиоактивного распада. Энергия связи ядер. Энергетический выход ядерных реакций.

<u>Контрольные мероприятия:</u> тест по теме «Строение атома и атомного ядра», контрольная работа по темам: «Оптика. Световые кванты. Атомная и ядерная физика».

Требования к уровню подготовки учащихся.

Учащиеся должны знать

- 1) основные законы классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики.
- 2) возможности использования и учета в технике изученных физических законов.

Учащиеся должны уметь

- 1) применять полученные знания в практической деятельности и повседневной жизни;
- 2) качественно объяснять механизм того или иного физического процесса;
- 3) решать комбинированные задачи с использованием различных физических законов;
- 4) использовать различные средства вычислительной техники (МК, ПК) при решении задач;
- 5) воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях.

Учебно-методическое обеспечение

Обязательная литература для учащихся

- 1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика: Учебник для 11 кл. общеобразовательных учреждений. М.: Просвещение, 2010.
- 2. Сборник задач по физике: Для 10-11 кл. средней общеобразовательной школы.// Сост. Г.Н. Степанова. СПб: Специальная литература, 1997.
- 3. Рымкевич А.П. Физика. Задачник. 10-11 кл.: Пособие для общеобразоват. учеб. заведений. М.: Дрофа, 2009.
- 4. Бендриков Г.А., Буховцев Б.Б., Керженцев В.В., Мякишев Г.Я. Физика: Сборник задач. М.: Рольф, 2000.
- 5. Сборник тестовых заданий для тематического и итогового контроля. Физика. 10 кл. 11кл. // Коноплич Р.В., Орлов В.А., Добродеев Н.А., Татур А.О. М.: Интеллект Центр, 2002.
- 6. Гольдфарб Н. И. Физика. Задачник. 9-11 кл. M.: Дрофа, 2000

Дополнительная литература для учащихся

- 1. Физика: Сборник задач для проведения устного экзамена по физике за курс средней школы. 11 кл. // Авт.-сост. В.А. Коровин, Г.Н. Степанова. М.: Дрофа, 2000.
- 2. Фрадкин В.Е., Пендюр И.Ю. Школьная физика: самое необходимое. СПб.: Авалон, 2003.
- 3. Богатин А.С. Пособие для подготовки к единому государственному экзамену и централизованному тестированию по физике. Ростов н/Д.: Феникс, 2004.
- 4. Болсун А.И., Галякевич Б.К. Физика в экзаменационных вопросах и ответах. Мн.: БелЭн, 2000.
- 5. Куперштейн Ю.С. Опорные конспекты и дифференцированные задачи. 10 класс. СПб.: Изд. Дом Сентябрь, 2002.
- 6. Ханнанов М.Н. ЕГЭ 2006. Физика. Типовые тестовые задания. М.: Изд. Экзамен, 2006.
- 7. Енохович А.С. Справочник по физике и технике. М.: Просвещение, 1989.

Электронное пособие:

Диск «Электронные уроки физики»

Диск «Физика 7-11 классы, практикум».

Диск «Физика 7-11 классы, библиотека наглядных пособий».

Интернет-ресурсы:

http://www.fizika.ru/ - Физика.ru · Сайт для преподавателей и учащихся

http://fizmir.org/ - Мир Физики

http://irodov.nm.ru/education.htm/ - Сборники задач по физике с примерами и решениями

Оборудование и приборы: смотри приложение № 2

No	Дата	Тема	Teop.,	Практ.,	Формы деятельности учителя
			ч	Ч	и учеников, способы контроля
		<u> </u>	класс	(34 ч)	
1	1.	Законы постоянного тока (7 ч)	2	5	
1.		Решение задач на применение закона Ома для участка цепи, формулы для расчёта сопротивления проводника, работы и мощности постоянного тока	0,2	0,8	Беседа с учащимися с целью актуализации исходного уровня знаний. Коллективное и самостоятельное решение задач.
2.		Решение задач на тепловое действие тока. Тепловая отдача нагревателя.	0,2	0,8	Объяснение учителя. Коллективный разбор задачи. Выполнение лабораторной работы «Измерение КПД установки с электрическим нагревателем» бригадами по 2 человека. Обсуждение полученных результатов.
3.		Расчёт участка электрической цепи. Последовательное, параллельное, смещанное соединение проводников. Эквивалентное сопротивление. Точки с равным потенциалом в электрических схемах.	0,4	0,6	Объяснение учителя. Составление и решение задач на расчёт сопротивления цепей постоянного тока в группах.
4.		Измерение силы тока и напряжения. Расширение пределов измерения амперметра и вольтметра.	0,3	0,7	Беседа с классом. Ученики самостоятельно подбирают шунты к амперметру и добавочные сопротивления к вольтметру. Кратковременная проверочная работа.
5.		Решение задач на описание электрических цепей постоянного тока с помощью закона Ома для полной цепи. Соединение источников тока.	0,3	0,7	Фронтальный опрос. Объяснение учителя. Коллективный разбор задач. Выполнение лабораторной работы «Определение ЭДС и внутреннего сопротивления источника тока методом двух измерений. Снятие нагрузочной характеристики» бригадами по 2 чел.

6.	Мощность во внешней цепи и КПД источника тока.	0,3	0,7	Инструктаж учащихся учителем. Выполнение практической работы с использованием компьютерных технологий «Исследование энергетических соотношений в цепях постоянного тока» (индивидуально). Коллективное обсуждение результатов энергетических соотношений в цепях постоянного тока» (индивидуально).
7.	Решение задач на применение законов электролиза. Определение заряда электрона.	0,3	0,7	Совместная работа учителя и учащихся. Индивидуально: выполнение теста «Постоянный ток» (по вариантам).
2.	Магнитное поле. Э.М.И. (3 ч)	1	2	
8.	Задачи о силовом действии однородного магнитного поля на проводник с током и движущиеся заряженные частицы.	0,25	0,75	Беседа с классом для актуализации опорных знаний. Совместное решение задач. Индивидуально: выполнение теста «Магнитное поле. Сила Ампера».
9.	Движение заряженных частиц в электрическом и магнитном полях. Циклотрон. Масс-спектрограф.	0,5	0,5	Физический диктант (проверка знания формулы силы Лоренца, её особенностей, правила левой руки). Выступления учащихся с сообщениями «Циклотрон», «Масс- спектрограф», подготовленными к занятию. Коллективный разбор задач.
10.	Решение задач на описание явления электромагнитной индукции: закон электромагнитной индукции, правило Ленца, индуктивность.	0,25	0,75	Совместная работа учителя и учащихся. Самостоятельное решение и составление задач на применение правила правой руки бригадами по 2 человека.

3.	Механические и электромагнитные колебания и волны (6 ч)	2	4	
11.	Решение задач на основе аналогии между механическими и электромагнитными колебаниями. Определение величин, характеризующих гармонические колебания.	0,4	0,6	Коллективная работа учащихся под руководством учителя по заполнению таблицы «Механические и электромагнитные колебания». Разбор учителем типовых задач. Самостоятельное решение задачи на определение величин, характеризующих гарм. колебания, по графику (по карточкам).
12.	Решение задач на применение формул периода колебаний пружинного и математического маятников и на превращение энергии при колебательном движении.	0,3	0,7	Коллективный разбор задач. Инструктаж учащихся учителем. Выполнение лабораторной работы «Определение жесткости пружины и периода колебаний подвешенного к ней груза» бригадами по 2 челове-
13.	Активное, ёмкостное и индуктивное сопротивления в цепи переменного тока.	0,3	0,7	Объяснение учителя. Выполнение практической работы с использованием компьютерных технологий «Исследование электрических схем с индуктивными, ёмкостными и активными элементами» (индивидуально). Коллективное обсуждение результатов.
14.	Использование метода векторных диаграмм для описания переменных токов и напряжений. Закон Ома для электрической цепи переменного тока. Электрический резонанс.	0,7	0,3	Объяснение учителя. Коллективный разбор задачи. Выступление ученика с сообщением «Применение и учет электрического резонанса в технике».
15.	Решение задач на применение формулы связи длины волны со скоростью её распространения и периодом (частотой), формулы Томсона.	0,3	0,7	Коллективное и самостоятельное решение задач. Выполнение теста «Электромагнитные волны» (индивидуально).
16.	Контрольная работа по темам «Магнитное поле. Электромагнитная индукция. Электромагнитные колебания и волны».		1	Выполнение учащимися контрольной работы.

4.	Олимпиадные задачи (3 ч)	1	2	
17.	Решение нестандартных и оригинальных задач.	0,5	0,5	Коллективная работа учителя и учащихся.
18.	Решение задач повышенной сложности на расчёт электрических цепей. Ознакомление с правилами Кирхгофа.	0,5	0,5	Совместное и самостоятельное решение задач.
19.	Решение задач межпред- метного содержания.		1	Решение задач в группах с последующим обсуждением.
5.	Оптика (5 ч)	1	4	
20.	Решение задач на применение законов отражения и преломления света. Полное отражение света.	0,3	0,7	Фронтальный опрос. Коллективный разбор задач. Самостоятельное решение задачи по карточкам.
21.	Построение изображений в тонких линзах.	0,25	0,75	Объяснение учителя. Самостоятельная работа учащихся по составлению обобщающей таблицы «Характеристики изображений в собирающих линзах в зависимости от расстояния от предмета до линзы» с возможной экспериментальной проверкой. Коллективное обсуждение результатов.
22.	Решение задач на применение формулы тонкой линзы.	0,2	0,8	Объяснение учителя. Совместное решение задач. Самостоятельное решение задач. Кратковременная проверочная работа.
23.	Человеческий глаз как оптическая система. Оптические приборы, увеличивающие угол зрения: лупа, микроскоп, телескоп.		1	Работа в группах по подготов- ке сообщений: «Глаз человека как оптическая система», «Микроскоп», «Те- лескоп» Выступление предста- вителей групп с последующим рецензированием.
24.	Решение задач на волновые свойства света (дисперсия, интерференция, дифракционная решётка.	0,25	0,75	Фронтальный опрос. Коллективный разбор задач

6.	Основы СТО (1 ч)	0,5	0,5	
25.	Решение задач на применение следствий СТО: относительность расстояний и промежутков времени, релятивистский закон сложения скоростей, закон взаимосвязи энергии и массы.			Беседа с классом. Коллективная работа учителя и учащихся.
7.	Световые кванты (Зч)	1	2	
26.	Решение задач на применение уравнения Эйнштейна для фотоэффекта.	0,5	0,5	Фронтальный опрос. Коллективный разбор задач. Самостоятельное решение задачи.
27.	Определение постоянной Планка.	0,25	0,75	Коллективный разбор задач. Кратковременная проверочная работа на решение задач (по вариантам).
28.	Задачи на определение энергии, импульса и массы фотонов.	0,25	0,75	Коллективное и самостоятельное решение задач. Индивидуально: выполнение теста «Квантовая физика».
8.	Атомная и ядерная фи- зика (6ч)	1	5	
29.	Ядерная модель атома. Квантовые постулаты Бора. Задачи на связь частоты (длины волны) излучения с энергией переходов в атоме.	0,25	0,75	Беседа с классом с целью актуализации исходного уровня знаний. Коллективный разбор задач.
30.	Задачи на составление уравнений ядерных реакций. Альфа-распад и бетараспад. Правило смещения.	0,3	0,7	Объяснение учителя. Выступление учащихся с сообщениями, подготовленными к занятию, про альфа- и бета-распад. Выполнение самостоятельной работы по карточкам на составление уравнений ядерных реакций.
31.	Задачи на применение закона радиоактивного распада.	0,2	0,8	Коллективный разбор задач. Индивидуально: выполнение теста «Строение атома и атомного ядра».
32.	Расчёт энергии связи ядер и энергетического выхода ядерных реакций.	0,25	0,75	Объяснение учителя. Самостоятельное решение за- дач бригадами по 2 человека.

33.	Контрольная работа по темам «Оптика. Световые кванты. Атомная и ядерная физика»	1	Выполнение контрольной работы учащимися.
34.	Урок- игра «Турнир зна- токов»	1	Решение нестандартных задач в группах с рецензированием результатов. Подведение итогов работы. Рекомендации ученикам по дальнейшей подготовке к экзаменам.